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Unidirectional laminated textiles (UDLTs) are flexible non-crimped fabric structures, the UD layers of
which are bonded together by small amounts of thermoplastic resin and covered by polyethylene films
over their external surfaces. Applications of them in ballistic protection clothes ensure lesser costs and
ability to resist the penetration of humidity, which may substantially decrease the overall ballistic
strength of the structure. This research focuses on the hierarchical multi-scale approach formulated for
large displacement, material non-linearity and failure. The micro-scale model of UDLT represents matrix
and fibres by means of 3D solid elements. A representative small volume (micro-cube) of the UDLT com-
posite is subjected to a series of large deformation tests up to the failure, which enable to approximately
evaluate linear elastic and failure parameters of the orthotropic shell elements that represent the
mechanical behaviour of UDLT at rougher scale. Obtained longitudinal, transversal and shear strength
parameters in association with the corresponding strains are the parameters used at mezzo-scale in order
to calculate the Hashin criteria for the shell element failure. The results of the research are employed in
order to achieve reasonable computational costs during the simulation of ballistic penetration through
multi-layer UD composite textile structures at medium velocity range.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Composite textiles consist of several materials with signifi-
cantly different properties. Usually the material with low stiffness
and therefore marked shear flexibility is reinforced with particles
or fibres of much higher stiffness. Moreover, the properties of com-
posites also depend on the length and distribution of reinforcing
fibres. We focus on the unidirectional fibre composites in this
research. Unidirectional composite textile consists of long fibres
aligned in one direction, which are bonded together by the matrix
material. The advantages of unidirectional composite fabrics are
light weight (low density), high strength in the longitudinal direc-
tion, high impact strength and high strength-to-weight ratio. UDLT
are widely used to manufacture lightweight high stiffness and
strength products such as helmets, bullet-proof vests, aircraft parts
etc.

Due to the complex internal micro-structure of UDLT, the sim-
ulation models of transverse impact on it are developed by
employing multi-scale approaches. The multi-scale approach
enables to simulate the structure by means of rougher models
and simultaneously to retain all main features of the mechanical
behaviour of the material. Most often two or three-scale model
representations are applied. By using two-scale (micro-macro)
approaches the internally multi-layer and multi-directional vol-
umes of a composite structure may be presented by continuous
shell or volumetric finite elements, where the equivalent proper-
ties of the material are obtained by investigating the characteristic
behaviour of the selected representative volume element (RVE) of
the composite. Within the RVE, the internal geometrical structure
of the composite is represented as detailed as appropriate, by tak-
ing into account real possibilities of the simulation software
employed for the analysis. Three-scale approaches introduce an
intermediate scale (mezzo-scale), which still represents the most
important formations of the modelled object by including them
directly into the patterns of the finite element structure. However,
the geometric patterns in the mezzo-scale are much more gener-
alised and rougher compared against the micro-scale representa-
tions. As an example, the multi-filament yarns of the woven
textiles presented by shell or solid elements is a typical example
of the mezzo-scale, as they enable to represent explicitly the pat-
terns of the weave including the contact interactions among the
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yarns [1–3]. The micro-scale model is employed for determining
the material properties of the elements, which represent the yarn,
while the corresponding macro-scale model presents the woven
structure as continuous membrane, the properties of which are
obtained by investigating the mechanical behaviour of the
mezzo-level structure. In case of UDLT, the mezzo-scale represents
a single UD layer by shell elements, while in the micro-level we
tend to fully investigate the geometric pattern of the filaments
and matrix material in contained in the RVE of the UD layer. In
the mezzo-level multi-layer, multi-directional and multi-sheet
textile structures are composed of UD layer shell elements by tak-
ing into account possible contact interactions, sliding and friction
between adjacent layers. At the macro-level the multi-layer textile
composite may be represented as orthotropic membrane, the prop-
erties of which are established by analysing the characteristic por-
tion of the corresponding mezzo-scale model.

In the range of small displacements and linear behaviour of the
material the usual approach is to compute the relation between the
means of the stresses and strains over the statistically representa-
tive sample of material referred as a representative volume ele-
ment (RVE) and to apply the effective properties in the macro
scale. Another approach for evaluation of effective linear elastic
material constants discussed in [4] was based on the analytical
micromechanical models (direct and modified rules of mixture)
and finite element (FE) modelling. Longitudinal, transverse and
shear strengths of the UDLT could be evaluated by considering
fibre shapes and their distribution [5], analytically or numerically.
A generalised three-scale model was proposed in [6] for prediction
of the strength of weaved, braided, stitched or knitted textiles,
where material heterogeneities were modelled as a unit cell of
UDLT with periodic boundary conditions in micro-scale. The homo-
genised parameters and stress–strain curves were obtained by
using FE analysis. Similarly, the periodic boundary conditions were
applied to RVE of hexagonal array in order to obtain the stress–
strain curves by means of explicit FE analysis in [7]. The appropri-
ate boundary conditions applied on the RVE of UDLT in each load-
ing case were discussed in [8]. In case the fibres of the UDLT are
aligned perfectly and the structure is periodic, the RVE is a unit cell
of either hexagonal, diamond or square array [8,9]. Random defects
can be considered by means of the RVE, which includes all
microstructural heterogeneities that occur in the composite [10].

The aim of this research is to numerically evaluate the effective
linear elastic and failure parameters of the unidirectional lami-
nated textile (UDLT) by investigating large strains and stresses of
the RVE. The main issue is to clarify if the failure conditions
obtained from RVE analysis in the micro-scale can be directly
applied for establishing the failure criteria of the equivalent model
in rougher scale. The transition from micro to UD layer shell ele-
ment at mezzo-level is performed by investigating the characteris-
tic behaviour of the RVE of the composite material.

Low density polyethylene matrix reinforced with aramid fibres
was used as a sample material combination in the micro-scale.
Aramid is an important reinforcement material due to its high ten-
sile strength and high stiffness, low density, resistance to high tem-
perature and other useful properties [11]. Two kinds of FE models
were used in this investigation. The micro-scale model assembled
of solid elements represents the internal micro-structure of the
UDLT and is computationally expensive. The RVE of this model
was used to evaluate the relation between stresses and strains of
the UDLT under the pure strain constraints. However, if pure shear
is modelled with the assumption that the deformed RVE remains
parallelogram with straight edges, the obtained shear moduli
may depend on the size of the analysed RVE. This assumption is
an overly restrictive constraint and the deformed RVE needs to sat-
isfy only periodicity and symmetry conditions for the pure shear
modelling [8]. These conditions were taken into account for mod-
elling pure shear strains. The implicit FE analysis is employed to
obtain linear elastic parameters such as Young’s moduli in longitu-
dinal and transverse directions, Poisson’s ratio and shear moduli.
The explicit FE analysis with slowly increasing displacements is
employed to obtain failure parameters such as longitudinal and
transverse tensile strengths, shear strength and respective strains.
The Hashin failure criterion is employed in shell elements of the
UD layer. This research may be considered as a further develop-
ment of our recent work [12], where the UDLT plies subjected to
ballistic impact were presented by three-zone FE models con-
structed at different scales. The known longitudinal failure strains
of aramid fibres were directly used for the representation of the
damage, however, a very important role was devoted for proper
erosion strain values used in the model. It was demonstrated that
proper combinations of failure and element erosion strains could
be established for the models of certain refinement range and
worked quite well, however, this lacked a solid theoretical back-
ground. The development in this work tends to establish these val-
ues at the level of RVE, as well as, convergence issues are
considered. The numerical experiments of the sphere impacting
solid and shell models are compared to adjust the erosion value
of shell model.

Although misaligned fibres and other defects can occur during
the manufacturing process, the material model with perfectly
aligned fibres is analysed in this research. Moreover, it is assumed
that the contact between the matrix and fibre system is perfect.
The interface between matrix and fibre should be added otherwise
[13].

2. Multiscale model

The multiscale model ‘‘bottom-to-top” was applied in this
research. The internal structure of the UD layer of the composite
layer and the properties of its materials are known in the micro-
scale. The structure analysed in the micro-scale is assumed to be
ideally periodic with square filling of the fibres. All fibres have
square arrangements without any overlapping. The unit cell of
the micro-level model consists of a cylindrical aramid fibre
inserted into the cubic volume of the low density polyethylene
matrix (Fig. 1). This type of the unit cell corresponds to square fibre
distribution in the UDLT and can be applied for the composites if
the filling does not exceed 78.5%. The hexagonal type of the struc-
ture should be used otherwise [7].

The stress–strain relation of the aramid fibre is almost linear
until the failure (Fig. 2(a)). The matrix material, on the contrary,
is elastic for small deformation only and undergo large plastic
deformations (Fig. 2(b)).

The *MAT_PLASTIC_KINEMATIC material model (MAT_003) is
employed in LS-DYNA to model the fibre and matrix materials with
parameters in Table 1. This material model enables to simulate the
failure of elements by defining the erosion strain value.

Model analysed in the mezzo scale is a small fragment of a
macro model and represents the most important formations of
the modelled object such as number of unidirectional layers
and material properties of each layer that depend on the direc-
tion of fibres. Moreover, the interaction between the adjacent
layers is considered in this scale. The layer of the unidirec-
tional fibre composite in the mezzo scale is simulated using
material model *MAT_LAMINATED_COMPOSITE_FABRIC
(MAT_58). This model may be used to simulate composite
materials with unidirectional layers, complete laminates and
woven fabrics [14]. The failure surface type FS = 0 appropriate
for unidirectional composites is applied in calculations. Linear
elastic parameters, strength points with respective strains and
erosion strain for this material model are evaluated using
RVE in the micro-scale.



Fig. 1. Scheme of RVE.

Fig. 2. Effective stress–effective strain curves for the fibre (a) and matrix (b).

Table 1
Mechanical constants of fibre and matrix material.

Fibre Matrix

Young’s modulus 9E+010 N/m2 3E+08 N/m2

Poisson’s ratio 0.3 0.2
Yield stress 2E+07 N/m2 3.5E+09 N/m2

Mass density 1400 kg/m3 920 kg/m3

Effective strain at failure 0.036 0.5
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2.1. Evaluation of linear elastic parameters of UDTL

Homogenisation is based on analysing the material structure in
the micro-scale. The fibre direction coincides with X axis. The RVE
of UDLT is employed for obtaining the homogenised mechanical
stiffness constants by performing the FE analysis. The method
described in [12] is applied to calculate stiffness tensor for small
strains. The six pure strains are created for the RVE by prescribing
the necessary displacements on the sides of the RVE in accordance
with the schemes in (Fig. 3). For the pure longitudinal strain (load-
ing case I) the small displacements d are prescribed for the nodes
on the front face of the RVE (x ¼ a). Displacements of other faces
of the RVE are constrained in normal directions as:

I : uða; y; zÞ ¼ d; uð0; y; zÞ ¼ 0; vðx;0; zÞ ¼ vðx; a; zÞ ¼ 0;
wðx; y;0Þ ¼ wðx; y; aÞ ¼ 0 ð1Þ
where uðx; y; zÞ, vðx; y; zÞ, wðx; y; zÞ denote displacements in X, Y and
Z directions respectively. Similarly, the pure strains in the trans-
verse Y (II) and Z (III) directions are simulated by imposing the dis-
placements of RVE faces as:

II : uð0; y; zÞ ¼ uða; y; zÞ ¼ 0; vðx; a; zÞ ¼ d; vðx;0; zÞ ¼ 0;
wðx; y;0Þ ¼ wðx; y; aÞ ¼ 0 ð2Þ

III : uð0; y; zÞ ¼ uða; y; zÞ ¼ 0; vðx;0; zÞ ¼ vðx; a; zÞ ¼ 0;
wðx; y; aÞ ¼ d; wðx; y;0Þ ¼ 0 ð3Þ

The pure shear strains (loading cases IV, V and VI for shear
strains XY , YZ, ZX respectively) are simulated by prescribing the
displacements of the nodes at the faces of the RVE with periodic
boundary conditions:



Fig. 3. Schemes for creating pure strains: I – longitudinal strain mode; II, III – transverse strain mode; IV, V, VI – shear strain mode in XY, YZ, ZX plane respectively.
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IV : uðx; a; zÞ ¼ d; uð0; y; zÞ ¼ uða; y; zÞ; vða; y; zÞ ¼ d;

vðx;0; zÞ ¼ vðx; a; zÞ; wðx; y;0Þ ¼ wðx; y; aÞ ¼ 0 ð4Þ

V : uð0; y; zÞ ¼ uða; y; zÞ ¼ 0; vðx; y; aÞ ¼ d;

vðx;0; zÞ ¼ vðx; a; zÞ; wðx; a; zÞ ¼ d; wðx; y;0Þ ¼ wðx; y; aÞ ð5Þ

VI : uðx;y;aÞ ¼ d; uð0;y;zÞ ¼ uða;y;zÞ;
vðx;0;zÞ ¼ vðx;a; zÞ ¼ 0; wða;y;zÞ ¼ d; wðx;y;0Þ ¼wðx;y;aÞ ð6Þ

The effective stiffness tensor is valid for small strains only and is
obtained by linear relation of mean stresses over RVE and strains:

C¼

rI
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x rVI
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ð7Þ
where superscript indicates the loading case, r and s are the means
longitudinal and shear stresses, e and c are the longitudinal and
shear strains of RVE. The mean stresses are calculated as a weighted
mean over the elements in RVE:

r ¼
XN
i¼1

Vi

V
ri;ri ¼ ri

x ri
y ri

z sixy siyz sizx
h iT

ð8Þ

where Vi is volume of the ith element and V is the volume of the
RVE.

The effective linear elastic parameters of material model for the
shell element are defined by longitudinal and transverse Young’s
moduli (Ex; Ey; Ez), Poisson’s ratio in the shell plane (myx) and shear
moduli (Gxy; Gyz; Gzx). All these parameters are obtained from the
compliance matrix S which is inverse of C and has a form:

S ¼

1
Ex

� myx
Ey

� mzx
Ez

0 0 0

� mxy
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1
Ey

� mzy
Ez

0 0 0

� mxz
Ex

� myz
Ey

1
Ez

0 0 0

0 0 0 1
Gxy
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0 0 0 0 1
Gyz

0
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Gzx

2
666666666664

3
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ð9Þ

where mxy
Ex

¼ myx
Ey
, myzEy

¼ mzy
Ez
, mzxEz ¼ mxz

Ex
.

2.2. Evaluation of failure parameters (strength)

The failure of shell elements can be defined by several criteria
such as maximum stress, maximum strain, Hill–Tsai, Hashin and
others. General formulation of failure criteria applied to evaluate
loads that cause failure of the individual layer of the unidirectional
composite is described in [5]. Failure criteria for the shell element
is described specifying the combination of stresses in local axes
that cause fracture:

Fðrx;ry; sxyÞ ¼ 1 ð10Þ
where rx, ry stresses in longitudinal and transverse directions of
the composite and sxy is shear stress. This means that shell element
works without failure if F < 1, fails if F ¼ 1 and is failed if F > 1.

The Hashin failure criterion is applied to simulate the failure of
the individual layer of the shell for the material model used in
numerical experiments. This criteria predicts failure in longitudinal
(fibre tension and compression) and transverse (matrix tension
and compression) modes [15]:

� Fibre tension and compression:

rx

XX

� �2
� 1 ¼ P 0; failed

< 0; elastic

�
ð11Þ

where XX ¼ XT; if rx P 0
XC; if rx < 0

�
, XT, XC – longitudinal tensile and

compressive strengths, X axis coincides with the fibre direction.
� Matrix tension and compression:

ry

YY

� �2
þ sxy

SC

� �2
� 1 ¼ P 0; failed

< 0; elastic

�
ð12Þ

where YY ¼ YT; if ry P 0
YC; if ry < 0

�
, YT , YC – transverse tensile and

compressive strengths, SC – shear strength.
The stiffness and strength of the UD composite in the longitudi-

nal direction are governed by the stiffness and strength of fibres.
Assume the stress–strain curves of aramid composites under the
longitudinal tension are close to linear until the failure. The stiff-
ness and strength of the UD composite in the transverse direction
and under the shear load are influenced by both matrix and fibre
materials. Usually the damage under the transverse tensile or
shear load occurs in the matrix, fibre–matrix interface or fibre
failure if fibres consist of thin filaments and therefore have low
transverse strength [5,16]. The explicit FE analysis of the RVE is



Fig. 5. Boundary conditions for ERODS evaluation.
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employed in order to obtain the failure limits of the UD composite.
The prescribed displacements are increased linearly till the failure
of the matrix or of the fibres takes place. The failure of the lami-
nated composite material model is defined by longitudinal and
transverse tensile strengths XT , YT and shear strength SC with
the respective failure strains eXT , eYT , cSC . These values are obtained
from the true stress–true (Hencky) strain curves under the longitu-
dinal transverse and shear loading (Fig. 4). The true strain tensor is
determined as [12]:

eH ¼ 1
2
� log Iþ 2 � eG� � ¼ 1

2
� log FT � F

� �
ð13Þ

where I is identity matrix, eG is Green’s strain tensor, F is a deforma-
tion gradient tensor:

F ¼
1þ @u

@x
@u
@y

@u
@z

@v
@x 1þ @v

@y
@v
@z

@w
@x

@w
@y 1þ @w

@z

2
664

3
775 ð14Þ

where u; v ; w are displacements in X, Y and Z directions.
As the maximum stress criterion is applied to identify the

strength of the material model in the micro-scale, the parameters
XT , YT and SC are maximum longitudinal, transverse and shear
stresses reached before the failure under the longitudinal, trans-
verse and shear loading respectively:

XT ¼ max
t

r½t�
x

� �
; eXT ¼ e½t0 �x ; t0 : r½t0 �

x ¼ XT ð15Þ

YT ¼ max
t

r½t�
y

� �
; eYT ¼ e½t0 �y ; t0 : r½t0 �

y ¼ YT ð16Þ
Fig. 4. Stress–strain curves of the RVE for the strength evaluation in longitu
SC ¼ max
t

s½t�xy
� �

; cSC ¼ c½t0 �xy ; t0 : s½t0 �xy ¼ SC ð17Þ

Thus, the pairs ðeXT ;XTÞ, ðeYT ;YTÞ are the points of tensile stress–
strain curves at which the failure in particular direction is expected
[12]. The shear failure is expected at the point ðcSC ; SCÞ under shear
loading. The pairs ðeXC ;XCÞ, ðeYC ;YCÞ define compressive failure
points and are assumed to be equal to the tensile strengths and
strains in numerical examples. As the strength point is reached,
the respective stress of shell element is reduced to the fixed value
dinal tensile mode (a); transverse tensile mode (b); XY shear mode (c).



Fig. 6. Analysed models for the ERODS evaluation in coordinate system (X–Y–Z) with material coordinate system (X0–Y0–Z). Axis Z coincides for both coordinate systems.

Fig. 7. Stress strain curves of the models: longitudinal (a); transverse (b); shear (c) in the material coordinate system.
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Table 2
ERODS values applied in numerical examples.

C00 C15 C30 C45 C60 C75 C90

ERODS 0.045 0.049 0.078 0.118 0.231 0.919 5
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but the element retains its strength in other directions. For exam-
ple, if shell element reaches its strength point in longitudinal
(fibre) direction, the longitudinal stress is reduced to small value
but the element exhibits elastic stress–strain behaviour in trans-
verse direction and shearing. This is a contradiction to the solid
element model where the RVE fails completely if the fibres of the
analysed model fail. Moreover, the shell element remains in the
structure and continues to deform even though all strength points
are reached. In addition, such elements increase stiffness of the
structure in contact problems.

2.3. Evaluation of erosion strain

The different conditions for the deletion of shell element can
significantly change the stiffness of the structure in contact prob-
lems. The shell element in LS-DYNA is deleted if the maximum
effective strain defined by parameter ERODS is reached. The effec-
tive strain ES combines longitudinal, transverse and shear strains
in the material coordinate system:
Fig. 8. Solid element model (a) and shell element mode

Table 3
Mechanical constants of homogeneous unidirectional ply in the material plane (a,b,c) w
direction and c axis corresponds to the shell thickness direction.

Ea Longitudinal Young’s modulus
Eb Transverse Young’s modulus
Pba Poisson’s ratio, ba plane
Gab Shear moduli corresponding to p
Gbc
Gca

Mass density

Non-linear and failure constants
XC, XT Longitudinal compressive and te
YC, YT Transverse compressive and tens
SC Shear strength
E11C, E11T Strain at longitudinal compressiv
E22C, E22T Strain at transverse compressive
GMS Strain at shear strength
SLIMS Shear stiffness reduction coeffici
SLIMTi Tensile stiffness reduction coeffi
SLIMCi Compressive stiffness reduction
ES ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � ex þ ey

2

� �2

þ ex � ey
2

� �2
þ c2xy

r
ð18Þ

The UDLT is considered as failed if the fibres of the structure fail.
This determines that ERODS should be equal to the strain value at
longitudinal strength point eXT for the shell element under the lon-
gitudinal tension. However, this ERODS value results in inade-
quately low stiffness of the structure in the mezzo model where
the strains are combined. Similarly to the previous example, the
fibres do not fail under the transverse tensile loading and the
ERODS value for the elements under this type of loading should
be equal to infinity. In case of large ERODS values, the stiffness of
mezzo model is overrated and elements undergo unrealistically
large deformations.

To define the ERODS value, the RVE should exhibit combined
strains. These conditions are created by prescribing gradually
increasing displacements U according the scheme in Fig. 5 for the
material sample rotated by angle h. The sample intends to fail in
the middle zone and the failure strain of the marginal zone is sig-
nificantly higher in order to avoid the material failure caused by
the prescribed artificial displacements. Material samples analysed
in this research are shown in Fig. 6 with the respective material
coordinate system. The samples maintain periodicity and include
all heterogeneities of the rotated micro-structure. This results in
different sizes of samples.
l (b) of 4 crossed plies in contact with rigid sphere.

here a axis coincides with the fibre direction, b axis corresponds to the transverse

5.344e10 N/m2

1.2519e9 N/m2

0.006205
lanes ab, bc, ca 5.61e8 N/m2

4.5047e8 N/m2

5.61e8 N/m2

1200 kg/m3

nsile strength 2.0919e9 N/m2

ile strength 1.07819e8 N/m2

1.656e7 N/m2

e and tensile strength 0.03922
and tensile strength 0.19557

0.144
ent 0.1
cient 0.1
coefficient 1



Table 4
Mechanical constants of rigid sphere.

Young’s modulus 1.7E+010 N/m2

Poisson’s ratio 0.4
Mass density 11,270 kg/m3
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The mean stress–strain relations are calculated for the middle
zone in the global coordinate system. As the ERODS is defined with
respect to the direction of the fibres, the calculated stress and
strain values are transferred to the material coordinate system
ðX 0; Y 0; Z0Þ using the standard transformation:

rx0 sx0y0 sx0z0
sy0x0 ry0 sy0z0
sz0x0 sz0y0 rz0

2
64

3
75 ¼ T

rx sxy sxz
syx ry syz
szx szy rz

2
64

3
75TT ð19Þ

where T is the direction cosine matrix. The stress–strain relations in
the unified material system are presented in Fig. 7. The maximum
effective strain for each model in Table 2 is calculated at the succes-
sive time step after the failure of the fibres takes place. The models
Fig. 9. Comparison of the sphere velocity during perforation of single ply (a) and 2 (b),
values obtained using respective models for evaluation.
C00, C15, C30, C45, C60 reach the strength in fibre direction (Fig. 7
(a)) and fail due to the failure of fibres. The failure of the model is
complete as the matrix fails at the same time as fibres which results
in the drop-off of the stresses in the transverse direction (Fig. 7(b)).
The matrix material for the model C75 fails before the failure of the
fibres take place and this results in significantly higher ERODS value
compared with the ERODS values calculated for the models dis-
cussed previously. Moreover, the fibres do not fail for the material
model C90 which is equivalent to transverse tensile loading. The
artificial ERODS value 5 represents this model in numerical
examples.

3. Model verification by numerical examples

The impact of sphere at medium initial velocity (440 m/s) to the
UDLT is analysed in numerical examples. Two models of the UDLT
are considered. Solid element model of UDLT (Fig. 8(a)) is referred
as a base model and represents the internal structure of the com-
posite. The parameters of component materials match the param-
eter values in Table 1 used in evaluation of equivalent material
characteristics. The mesh of solid model is coarser than the mesh
4 (c), 8 (d) crossed plies using solid-element model and shell models with ERODS
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used for RVE in evaluation of parameters which may result in
slightly reduced stiffness of the structure. Shell element models
(Fig. 8(b)) with material parameters in Table 3 and ERODS values
in Table 2 are analysed to identify the appropriate ERODS value
for the impact of sphere. Factors SLIMS, SLIMTi, SLIMCi in Table 4
are applied to limit the strength values after the failure point is
reached. If factors are equal to 1, the stress remains at a maximum
value identical to the strength. This value is preferred for compres-
sive and shear behaviour [14]. If the failure point is reached, the
respective stress of the element is reduced to SLIMii*strength
despite the strain value. One through-thickness integration point
is employed for the shell element as the bending of shell is not con-
sidered. The sphere is modelled by shell elements as a rigid body.
The material model *MAT_RIGID (MAT_020) is employed to define
sphere material with the parameters in Table 4. All displacements
in X and Y directions and all rotations are constrained for the nodes
of sphere. The translational mass of sphere is equal to the mass of
solid sphere with mass density in Table 4. The CONTACT_EROD
ING_SURFACE_TO_SURFACE type is employed to define the contact
interaction between the sphere and UDLT sheets. The same contact
type is used for the contact interaction between the adjacent
sheets of the models. On the contrary to other contact types in
LS-DYNA, the contact surface for the eroding contact type is
updated during the contact interaction. The models are reduced
to the quarter with the appropriate symmetry conditions. In order
to avoid failure of fibres due to the boundary effects, the material
in marginal zone has significantly higher erosion values.

The change in sphere velocity during the perforation of the
single ply of UDLT (Fig. 8(a)), two (Fig. 8(b)), four (Fig. 8(c)) and
eight (Fig. 8(d)) crossed plies for mezzo-scale models with differ-
ent ERODS values is compared with the change in sphere velocity
for the respective model represented by 3D solid elements as a
reference model. Sphere velocity of shell models can be classified
to three groups. The first group represents shell models with
ERODS values calculated for the material samples where matrix
failure occurs before the fibre failure. Shell models ERC75 and
ERC90 with ERODS values representing models C75 and C90 are
significantly stiffer than other shell models and solid model.
The second group consists of shell models ERC00 and ERC15 that
exhibit brittle behaviour and sphere velocity is not reduced
enough compared to the solid model. Results for sphere velocity
with shell models of the third group ERC30, ERC45 and ERC60
converge as the number of plies is increased. The ERC60 model
has the highest ERODS value and this value should be applied
in successive calculations to ensure that elements are not eroded
prematurely (see Fig. 9).

The radius of sphere in proportion to the radius of the fibre in
solid element model is rather small and failure of each fibre has
a significant influence in the sphere velocity. The deletion of shell
element in the shell model has a significant effect likewise. To
reduce the influence of single fibre or single shell element, the ratio
of sphere radius to fibre radius should be increased and the larger
models should be analysed. However, analysis of larger solid model
is limited by computational resources.

4. Conclusions

Numerical simulation of composite materials with respect to
the internal structure requires high computational resources.
Moreover, the management of results takes unreasonable amount
of time. The application of multi-scale models is a solution that
enables to save computational time and resources.

The bridging between the micro and mezzo scales was analysed
in this research. The complex internal structure of a single layer of
composite material is analysed in micro scale. The equivalent
linear elastic parameters and material strength are evaluated for
the sample of typical material structure. Further on, the method
to evaluate the effective strain for eroding shell element is intro-
duced in this article. The method consists of applying longitudinal
tensile load for the sample of rotated material structure. The equiv-
alent stiffness and failure parameters obtained in this investigation
have been verified by comparing the results of FE analysis of the
models obtained in two different scales. As a reference model,
the transverse impact of a rigid body to a composite sheet consist-
ing of several plies presented in the micro-scale by 3D solid ele-
ments in LS-DYNA has been used. The adequacy of the results
obtained by the FE analysis of much rougher mezzo-scale models
based on the obtained equivalent stiffness and failure parameters
with variety of erosion strain values has been estimated by com-
parison with the reference model results. The recommended
ERODS value in successive calculation is the highest effective strain
value calculated for the material sample where the failure of fibres
take place before the failure of the matrix. This is caused by the fact
that the failure of the matrix drastically increase the value of the
effective strain. It should be noticed that the angle between the
material coordinate system and the coordinate system the load is
applied depends on the parameters of consisting materials and
the internal structure. Furthermore, the application of ERODS value
should be considered with respect to the specific problem. In addi-
tion, each unidirectional ply of the reference model corresponded
to the single homogeneous orthotropic ply of the shell model in
the research. For the more generalised model in the macro scale
further research should be carried out, where integral behaviour
of all plies should be presented by using continuous shell or volu-
metric finite elements and equivalent erosion strains should be
evaluated with respect to the fibre direction in the constituent
plies and by taking into account the contact interaction between
the layers.
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